DeltaA/DeltaD regulate multiple and temporally distinct phases of notch signaling during dopaminergic neurogenesis in zebrafish.
نویسندگان
چکیده
Dopaminergic neurons develop at distinct anatomical sites to form some of the major neuromodulatory systems in the vertebrate brain. Despite their relevance in neurodegenerative diseases and the interests in reconstitutive therapies from stem cells, mechanisms of the neurogenic switch from precursor populations to dopaminergic neurons are not well understood. Here, we investigated neurogenesis of different dopaminergic and noradrenergic neuron populations in the zebrafish embryo. Birth-dating analysis by EdU (5-ethynyl-2'-deoxyuridine) incorporation revealed temporal dynamics of catecholaminergic neurogenesis. Analysis of Notch signaling mutants and stage-specific pharmacological inhibition of Notch processing revealed that dopaminergic neurons form by temporally distinct mechanisms: dopaminergic neurons of the posterior tuberculum derive directly from neural plate cells during primary neurogenesis, whereas other dopaminergic groups form in continuous or wavelike neurogenesis phases from proliferating precursor pools. Systematic analysis of Notch ligands revealed that the two zebrafish co-orthologs of mammalian Delta1, DeltaA and DeltaD, control the neurogenic switch of all early developing dopaminergic neurons in a partially redundant manner. DeltaA/D may also be involved in maintenance of dopaminergic precursor pools, as olig2 expression in ventral diencephalic dopaminergic precursors is affected in dla/dld mutants. DeltaA/D act upstream of sim1a and otpa during dopaminergic specification. However, despite the fact that both dopaminergic and corticotropin-releasing hormone neurons derive from sim1a- and otpa-expressing precursors, DeltaA/D does not act as a lineage switch between these two neuronal types. Rather, DeltaA/D limits the size of the sim1a- and otpa-expressing precursor pool from which dopaminergic neurons differentiate.
منابع مشابه
Multiple delta genes and lateral inhibition in zebrafish primary neurogenesis.
In Drosophila, cells are thought to be singled out for a neural fate through a competitive mechanism based on lateral inhibition mediated by Delta-Notch signalling. In tetrapod vertebrates, nascent neurons express the Delta1 gene and thereby deliver lateral inhibition to their neighbours, but it is not clear how these cells are singled out within the neurectoderm in the first place. We have fou...
متن کاملher4, a zebrafish homologue of the Drosophila neurogenic gene E(spl), is a target of NOTCH signalling.
her4 encodes a zebrafish bHLH protein of the hairy-E(spl) family. The gene is transcribed in a complex pattern in the developing nervous system and in the hypoblast. During early neurogenesis, her4 expression domains include the regions of the neural plate from which primary neurons arise, suggesting that the gene is involved in directing their development. Indeed, misexpression of specific her...
متن کاملIdentification of the Mind Bomb1 Interaction Domain in Zebrafish DeltaD
Ubiquitylation promotes endocytosis of the Notch ligands like Delta and Serrate and is essential for them to effectively activate Notch in a neighboring cell. The RING E3 ligase Mind bomb1 (Mib1) ubiquitylates DeltaD to facilitate Notch signaling in zebrafish. We have identified a domain in the intracellular part of the zebrafish Notch ligand DeltaD that is essential for effective interactions ...
متن کاملInteraction with Notch determines endocytosis of specific Delta ligands in zebrafish neural tissue.
Mind bomb1 (Mib1)-mediated endocytosis of the Notch ligand DeltaD is essential for activation of Notch in a neighboring cell. Although most DeltaD is localized in cytoplasmic puncta in zebrafish neural tissue, it is on the plasma membrane in mib1 mutants because Mib1-mediated endocytosis determines the normal subcellular localization of DeltaD. Knockdown of Notch increases cell surface DeltaA a...
متن کاملDevelopment and Notch Signaling Requirements of the Zebrafish Choroid Plexus
BACKGROUND The choroid plexus (CP) is an epithelial and vascular structure in the ventricular system of the brain that is a critical part of the blood-brain barrier. The CP has two primary functions, 1) to produce and regulate components of the cerebral spinal fluid, and 2) to inhibit entry into the brain of exogenous substances. Despite its importance in neurobiology, little is known about how...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 30 49 شماره
صفحات -
تاریخ انتشار 2010